Andromeda Galactic Center Thick Disk Sagittarius A* Star Formation Large Magellanic Cloud Satellite Galaxies Galactic Structure Cosmic Phenomena Galactic Collisions Galactic Evolution Galactic Structures Dark Matter Structure Gamma Ray Excess Radcliffe Wave Interstellar Objects Gaia Mission Thick Disk Stars Supernova Remnants Galactic Dynamics Galactic Mapping Star Behavior Binary Stars Binary Star Systems Gamma Rays Pulsars Infrared Observations Galactic Collision Central Molecular Zone Halo Stars eROSITA bubbles Visibility Extreme Outer Galaxy Star Observations Andromeda Galaxy Gaia Space Telescope Evolution Galactic Mergers Star-Forming Regions Black Holes Nebulae Star Populations Interstellar Medium Cosmic Events Formation Small Magellanic Cloud Galactic Bulge Spiral Galaxy Euclid Sagittarius C Stellar Streams Extragalactic Origin Center NGC 2264 Collision and merger with Magellanic Clouds Mapping Nuclear Disk Rotation Curve Center of Milky Way Gaia spacecraft Radcliffe Wave motion Radcliffe Wave properties Radcliffe Wave research Galactic Potential Radcliffe Wave Effect Galaxy Dynamics Gaia Observatory Data Star Streams Ancient Structures Stellar Composition Gaia Telescope Ancient Star Streams Building Blocks Ancient Stars LSST Camera Black Holes in Milky Way BH3 Galaxy Merging Gaia BH3 Orion Constellation Cosmic Distances Navigation Star Evolution Stellar Dynamics Rotation Period Black Hole Research Galactic Halo Star Discovery Local Bubble Star Families G359.13 Planetary Systems Interstellar Clouds Great Rift Vía Láctea Galactic Phenomena Milky Way Core Season Dark Halo Radio Astronomy
A deep-learning surrogate for supernova physics let researchers bypass tiny timesteps to achieve over 100× speedups, with results validated on Japan’s Fugaku and Miyabi supercomputers.